

Journal of Hazardous Materials B136 (2006) 995-996

Journal of Hazardous Materials

www.elsevier.com/locate/jhazmat

Discussion

A note on the comments by Dr. Y.S. Ho on "Nitrate removal from aqueous solution by adsorption onto various materials"

K. Vasanth Kumar

Department of Chemical Engineering, AC College of Technology, Anna University, Chennai, TN 600025 India

Received 26 January 2006; accepted 27 January 2006

Available online 15 March 2006

Keywords: Adsorption; Adsorption kinetics; Pseudo-second order; Citation error

Based on the comments by Y.S. Ho [1] on the work of Öztürk and Bektaş [2], I would like to address some important issues which are as follows:

The comments by Dr. Y.S. Ho claims to cite the work by Ho [3] for pseudo second order kinetics expression. I would like to point out that in 1984, Blanchard et al. proposed [4] a second order rate equation for the exchange reaction of divalent metallic ions onto NH_4^+ ions fixed zeolite particles. The linearized form of Blanchard et al. [4] second order kinetics was given by:

$$\frac{1}{q_{\rm c} - q} - \alpha = kt \tag{1}$$

where q_e and q represent the amount of dye adsorbed at equilibrium and at any time t and represented in terms of mg/g, k the second order rate constant. The rate constant can be obtained from the slope of plot between $1/(q_e-q)$ versus time t. Applying boundary conditions q=0 for t=0, it follows that $\alpha=1/q_e$. Thus this model has an advantage to predict the equilibrium uptake capacity without the support of experimental data. The non-linearized form of Eq. (1) can be given by:

$$q = \frac{ktq_{\rm e} + \alpha q_{\rm e} - 1}{kt + \alpha} \tag{2}$$

Applying the value of α in Eq. (1) and rearranging, the non-linearized form of pseudo second order expression can be obtained as follows:

$$q = \frac{q_{\rm e}^2 kt}{1 + kq_{\rm e}t} \tag{3}$$

E-mail address: vasanth_vit@yahoo.com.

The non-linear form of the pseudo second order expression of Ho was given by [3]:

$$q = \frac{q_{\rm e}^2 kt}{1 + kq_{\rm e}t} \tag{4}$$

From Eqs. (3) and (4), it is clear that the pseudo second order expression of the Blanchard et al. [4] and Ho [3] were the same. Further, it is clear that it was Blanchard et al. [4] who first proposed the pseudo second order kinetic expression in 1984 and only a linearized form of pseudo second order kinetic model was reported by Ho [3] in 1995. Recently it have been proved that Blanchard et al.'s and the expression of Ho [3] were the same for the sorption kinetics of safranin onto rice husk particles [5].

From scientific point of view it is always a must to give credit to the authors who first proposed the theoretical model. Thus I would like to point out that pseudo second order model was not proposed by Ho, it was originally reported by Blanchard et al. [4]. Thus it will be more appropriate to cite the works by Blanchard et al. [4] for pseudo second order kinetic expression.

Thus I would like to make a note that the works by Blanchard et al. [4] should be cited for pseudo second order kinetic expression.

References

- Y.S. Ho, Comment on "Nitrate removal from aqueous solution by adsorption onto various materials" by N. Öztürk, T.E. Bektaş, J. Hazard. Mater. B118 (2005) 253–254.
- [2] N. Öztürk, T.E. Bektaş, Nitrate removal from aqueous solution by adsorption onto various materials, J. Hazard. Mater. 112 (1-2) (2004) 155–162

- [3] Y.S. Ho, Adsorption of heavy metals from waste streams by peat, PhD Thesis, University of Brimmingham, UK, 1995.
- [4] G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites, Water Res. 18 (1984) 1501–1507.
- [5] K.V. Kumar, S. Sivanesan, Pseudo second order kinetic models for safranin onto rice husk: comparison of linear and non-linear regression analysis, Process. Biochem. Article, doi:10.1016/j.procbio.2005.11.014, in press.